Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Frigid Zone Medicine ; 3(2):105-113, 2023.
Article in English | Academic Search Complete | ID: covidwho-2320890

ABSTRACT

In March 2022, more than 600 million cases of Corona Virus Disease 2019 (COVID-19) and about 6 million deaths have been reported worldwide. Unfortunately, while effective antiviral therapy has not yet been available, chloroquine (CQ)/hydroxychloroquine (HCQ) has been considered an option for the treatment of COVID-19. While many studies have demonstrated the potential of HCQ to decrease viral load and rescue patients' lives, controversial results have also been reported. One concern associated with HCQ in its clinical application to COVID-19 patients is the potential of causing long QT interval (LQT), an electrophysiological substrate for the induction of lethal ventricular tachyarrhythmias. Yet, the mechanisms for this cardiotoxicity of HCQ remained incompletely understood. Adult New Zealand white rabbits were used for investigating the effects of HCQ on cardiac electrophysiology and expression of ion channel genes. HEK-293T cells with sustained overexpression of human-ether-a-go-go-related gene (hERG) K+ channels were used for whole-cell patch-clamp recordings of hERG K+ channel current (IhERG). Quantitative RT-PCR analysis and Western blot analysis were employed to determine the expression of various genes at mRNA and protein levels, respectively. electrocardiogram (ECG) recordings revealed that HCQ prolonged QT and RR intervals and slowed heart rate in rabbits. Whole-cell patch-clamp results showed that HCQ inhibited the tail current of hERG channels and slowed the reactivation process from inactivation state. HCQ suppressed the expression of hERG and hindered the formation of the heat shock protein 90 (Hsp90)/hERG complex. Moreover, the expression levels of connexin 43 (CX43) and Kir2.1, the critical molecular/ionic determinants of cardiac conduction thereby ventricular arrythmias, were decreased by HCQ, while those of Cav1.2, the main Ca2+ handling proteins, remained unchanged and SERCA2a was increased. HCQ could induce LQT but did not induce arrhythmias, and whether it is suitable for the treatment of COVID-19 requires more rigorous investigations and validations in the future. [ FROM AUTHOR] Copyright of Frigid Zone Medicine is the property of Sciendo and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

2.
Talanta ; 263: 124678, 2023 Oct 01.
Article in English | MEDLINE | ID: covidwho-2320337

ABSTRACT

As a common antioxidant and nutritional fortifier in food chemistry, rutin has positive therapeutic effects against novel coronaviruses. Here, Ce-doped poly(3,4-ethylenedioxythiophene) (Ce-PEDOT) nanocomposites derived through cerium-based metal-organic framework (Ce-MOF) as a sacrificial template have been synthesized and successfully applied to electrochemical sensors. Due to the outstanding electrical conductivity of PEDOT and the high catalytic activity of Ce, the nanocomposites were used for the detection of rutin. The Ce-PEDOT/GCE sensor detects rutin over a linear range of 0.02-9 µM with the limit of detection of 14.7 nM (S/N = 3). Satisfactory results were obtained in the determination of rutin in natural food samples (buckwheat tea and orange). Moreover, the redox mechanism and electrochemical reaction sites of rutin were investigated by the CV curves of scan rate and density functional theory. This work is the first to demonstrate the combined PEDOT and Ce-MOF-derived materials as an electrochemical sensor to detect rutin, thus opening a new window for the application of the material in detection.


Subject(s)
Cerium , Metal-Organic Frameworks , Rutin , Polymers , Electrochemical Techniques/methods
3.
PLoS One ; 18(4): e0284858, 2023.
Article in English | MEDLINE | ID: covidwho-2304549

ABSTRACT

Closed-loop management of athletes at the training base is a compromise approach that balanced epidemic prevention and sports training during the COVID-19 pandemic. This study investigated the impact of prolonged closed-loop management on athletes' sleep and mood during the 2022 Shanghai Omicron wave. The Pittsburgh Sleep Quality Index and the Profile of Mood States were used to assess the sleep and mood states of 110 professional athletes in "closed-loop management" at the training base after 1 and 2 months of closed-loop management, respectively, to characterize changes in sleep and mood with prolonged closed-loop management. After two months of control, the sleep and mood of 69 athletes and students of the same age were measured using the Pittsburgh Sleep Quality Index and Perceptual Stress Scale, as well as the Warwick-Edinburgh Mental Well-being Scale, to compare the differences in sleep and mood between athletes undergoing closed-loop management and the general population who were managed in the community. Paired sample t-tests and independent sample t-tests were used for comparisons across different time intervals and different management approaches. Results showed that with the time of closed-loop management increased, athletes woke up earlier (p = 0.002), slept less (p = 0.024), and became angrier (p = 0.014); athletes had poorer overall sleep quality (p < 0.001) but lower stress level (p = 0.004) than those who were outside the base. In closed-loop management, the athletes were able to maintain a stable sleep and mood state. Sports team administrators must be aware of the need to improve athletes' sleep quality and help athletes to agree with this approach of management.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , China/epidemiology , Athletes , Sleep
4.
Water Quality Research Journal ; 56(2):68-82, 2021.
Article in English | ProQuest Central | ID: covidwho-2254515

ABSTRACT

The International Water Association (IWA) initiated a Task Force in April 2020 to serve as a leadership team within IWA whose role is to keep abreast and communicate the emerging science, technology, and applications for understanding the impact and the ability to respond to the COVID-19 pandemic and specifically designed for water professionals and industries. Expertise was nominated across the world with the purpose of collectively providing the water sector with knowledge products for the guidance on the control of COVID-19 and other viruses. This review paper developed by a working group of the IWA Task Force focuses on the control of COVID-19. The purpose of this review paper is to provide an understanding of existing knowledge with regards to COVID-19 and provide the necessary guidance of risk mitigation based on currently available knowledge of viruses in wastewater. This review paper considered various scenarios for both the developed world and the developing world and provided recommendations for managing risk. The review paper serves to pool the knowledge with regards to the pandemic and in relation to other viruses. The IWA Task Team envisage that this review paper provides the necessary guidance to the global response to the ongoing pandemic.

5.
Journal of infection and public health ; 2023.
Article in English | EuropePMC | ID: covidwho-2254513

ABSTRACT

Background The effect of inhaled corticosteroid (ICS) on the risk of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection is unclear. Methods We performed a systematic review and meta-analysis of clinical studies that assessed the association between the use of ICS and the risk of SARS-COV-2 infection. PubMed, Web of Science, Scopus, Cochrane Library and Google Scholar were searched to January 1st, 2023. ROBINS-I was used to assess risk of bias of included studies. The outcome of interest was the risk of SARS-COV-2 infection in patients and odds ratio (OR) with 95% confidence interval (95% CI) were calculated using Comprehensive Meta-analysis software version 3. Results Twelve studies involving seven observational cohort studies, three case-control studies, and two cross-sectional studies were included in this meta-analysis. Overall, compared to non-ICS use, the pooled odds ratio (OR) of the risk of SARS-COV-2 infection was 0.997 (95% confidence interval [CI] 0.664-1.499;p=0.987) for patients with ICS use. Subgroup analyses demonstrated no statistical significance in the increased risk of SARS-COV-2 infection in patients with ICS monotherapy or in combination with bronchodilators (pooled OR=1.408;95% CI=0.693-2.858;p=0.344 in ICS monotherapy, and pooled OR=1.225;95% CI=0.533-2.815;p=0.633 in ICS combination, respectively). In addition, no significant association was observed between ICS use and the risk of SARS-COV-2 infection for patients with COPD (pooled OR=0.715;95% CI=0.415-1.230;p=0.225) and asthma (pooled OR=1.081;95% CI=0.970-1.206;p=0.160). Conclusions The use of ICS, either monotherapy or in combination with bronchodilators, does not have impact on the risk of SARS-COV-2 infection. Data availability The datasets used and analysed in the current study are available from the corresponding author on reasonable request.

6.
Expert Rev Respir Med ; 17(4): 319-328, 2023 04.
Article in English | MEDLINE | ID: covidwho-2288058

ABSTRACT

BACKGROUND: The right time of high-flow nasal cannulas (HFNCs) application in COVID-19 patients with acute respiratory failure remains uncertain. RESEARCH DESIGN AND METHODS: In this retrospective study, COVID-19-infected adult patients with hypoxemic respiratory failure were enrolled. Their baseline epidemiological data and respiratory failure related parameters, including the Ventilation in COVID-19 Estimation (VICE), and the ratio of oxygen saturation (ROX index), were recorded. The primary outcome measured was the 28-day mortality. RESULTS: A total of 69 patients were enrolled. Fifty-four (78%) patients who intubated and received invasive mechanical ventilatory (MV) support on day 1 were enrolled in the MV group. The remaining fifteen (22%) patients received HFNC initially (HFNC group), in which, ten (66%) patients were not intubated during hospitalization were belong to HFNC-success group and five (33%) of these patients were intubated later due to disease progression were attributed to HFNC-failure group. Compared with those in the MV group, those in the HFNC group had a lower mortality rate (6.7% vs. 40.7%, p = 0.0138). There were no differences in baseline characteristics among the two groups; however, the HFNC group had a lower VICE score (0.105 [0.049-0.269] vs. 0.260 [0.126-0.693], p = 0.0092) and higher ROX index (5.3 [5.1-10.7] vs. 4.3 [3.9-4.9], p = 0.0007) than the MV group. The ROX index was higher in the HFNC success group immediately before (p = 0.0136) and up to 12 hours of HFNC therapy than in the HFNC failure group. CONCLUSIONS: Early intubation may be considered in patients with a higher VICE score or a lower ROX index. The ROX score during HFNCs use can provide an early warning sign of treatment failure. Further investigations are warranted to confirm these results.


High flow nasal cannulas (HFNCs) were widely used in patients with COVID-19 infection related hypoxemic respiratory failure. However, there were concerns about its failure and related delayed intubation may be associated with a higher mortality rate. This retrospective study revealed patients with higher baseline disease severity and higher VICE scores may be treated with primary invasive mechanical ventilation. On the contrary, if their baseline VICE score is low and ROX index is high, HFNCs treatment might be safely applied initially. The trends of serial ROX index values during HFNC use could be a reliable periscope to predict the HFNC therapy outcome, therefore avoided delayed intubation.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Adult , Humans , Oxygen , Cannula , Retrospective Studies , Oxygen Inhalation Therapy/methods , COVID-19/therapy , Noninvasive Ventilation/adverse effects , Noninvasive Ventilation/methods , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/therapy
7.
Front Med (Lausanne) ; 10: 1121465, 2023.
Article in English | MEDLINE | ID: covidwho-2255164

ABSTRACT

Background: The aim of our study was to externally validate the predictive capability of five developed coronavirus disease 2019 (COVID-19)-specific prognostic tools, including the COVID-19 Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Shang COVID severity score, COVID-intubation risk score-neutrophil/lymphocyte ratio (IRS-NLR), inflammation-based score, and ventilation in COVID estimator (VICE) score. Methods: The medical records of all patients hospitalized for a laboratory-confirmed COVID-19 diagnosis between May 2021 and June 2021 were retrospectively analyzed. Data were extracted within the first 24 h of admission, and five different scores were calculated. The primary and secondary outcomes were 30-day mortality and mechanical ventilation, respectively. Results: A total of 285 patients were enrolled in our cohort. Sixty-five patients (22.8%) were intubated with ventilator support, and the 30-day mortality rate was 8.8%. The Shang COVID severity score had the highest numerical area under the receiver operator characteristic (AUC-ROC) (AUC 0.836) curve to predict 30-day mortality, followed by the SEIMC score (AUC 0.807) and VICE score (AUC 0.804). For intubation, both the VICE and COVID-IRS-NLR scores had the highest AUC (AUC 0.82) compared to the inflammation-based score (AUC 0.69). The 30-day mortality increased steadily according to higher Shang COVID severity scores and SEIMC scores. The intubation rate exceeded 50% in the patients stratified by higher VICE scores and COVID-IRS-NLR score quintiles. Conclusion: The discriminative performances of the SEIMC score and Shang COVID severity score are good for predicting the 30-day mortality of hospitalized COVID-19 patients. The COVID-IRS-NLR and VICE showed good performance for predicting invasive mechanical ventilation (IMV).

8.
J Infect Public Health ; 16(5): 823-830, 2023 May.
Article in English | MEDLINE | ID: covidwho-2254516

ABSTRACT

BACKGROUND: The effect of inhaled corticosteroid (ICS) on the risk of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection is unclear. METHODS: We performed a systematic review and meta-analysis of clinical studies that assessed the association between the use of ICS and the risk of SARS-COV-2 infection. PubMed, Web of Science, Scopus, Cochrane Library and Google Scholar were searched to January 1st, 2023. ROBINS-I was used to assess risk of bias of included studies. The outcome of interest was the risk of SARS-COV-2 infection in patients and odds ratio (OR) with 95% confidence interval (95% CI) were calculated using Comprehensive Meta-analysis software version 3. RESULTS: Twelve studies involving seven observational cohort studies, three case-control studies, and two cross-sectional studies were included in this meta-analysis. Overall, compared to non-ICS use, the pooled odds ratio (OR) of the risk of SARS-COV-2 infection was 0.997 (95% confidence interval [CI] 0.664-1.499; p = 0.987) for patients with ICS use. Subgroup analyses demonstrated no statistical significance in the increased risk of SARS-COV-2 infection in patients with ICS monotherapy or in combination with bronchodilators (pooled OR=1.408; 95% CI=0.693-2.858; p = 0.344 in ICS monotherapy, and pooled OR=1.225; 95% CI=0.533-2.815; p = 0.633 in ICS combination, respectively). In addition, no significant association was observed between ICS use and the risk of SARS-COV-2 infection for patients with COPD (pooled OR=0.715; 95% CI=0.415-1.230; p = 0.225) and asthma (pooled OR=1.081; 95% CI=0.970-1.206; p = 0.160). CONCLUSIONS: The use of ICS, either monotherapy or in combination with bronchodilators, does not have impact on the risk of SARS-COV-2 infection.


Subject(s)
Bronchodilator Agents , COVID-19 , Humans , Bronchodilator Agents/therapeutic use , Cross-Sectional Studies , SARS-CoV-2 , Adrenal Cortex Hormones/adverse effects , Observational Studies as Topic
9.
Risk Manag Healthc Policy ; 16: 209-214, 2023.
Article in English | MEDLINE | ID: covidwho-2228775

ABSTRACT

Importance: COVID-19 vaccination has been associated with various adverse outcomes. Although studies have reported cases of arrhythmia after COVID-19 vaccination, the precise underlying mechanism remains to be elucidated. Objective: Here, we report the case of a patient who developed atrial fibrillation after receiving the mRNA-1273 vaccine and describe our findings in light of relevant cases in the literature. Design Setting and Participants: This is a case report and a review of the relevant literature. A 55-year-old woman presented to our clinic with a history of paroxysmal atrial fibrillation, hypertension, and mild mitral valve prolapse. The patient developed atrial fibrillation 3 days after receiving a COVID-19 vaccine. She was diagnosed with moderate-to-severe tricuspid regurgitation and severe mitral regurgitation, and underwent valve repair surgery. To obtain relevant articles (December 2020 through August 2022), we searched the following key words on PubMed: atrial fibrillation and COVID-19 vaccination. Results: A total of 5 relevant case reports were identified. COVID-19 vaccination led to arrhythmia, including atrial fibrillation, within 14 days. Conclusions and Relevance: Cases of patients developing arrhythmia after COVID-19 vaccination have been increasingly reported. Although the underlying mechanism remains unclear, we hypothesize that mRNA vaccination may lead to arrhythmia and associated valve diseases. Thus, before administering mRNA-1273 vaccines to patients with a history of valvular heart disease or atrial fibrillation, the patients' cardiologists must be consulted.

10.
Lancet Gastroenterol Hepatol ; 8(2): 120-132, 2023 02.
Article in English | MEDLINE | ID: covidwho-2221540

ABSTRACT

BACKGROUND: Management strategies for non-alcoholic steatohepatitis (NASH) are based predominantly on lifestyle modification, with no approved disease-modifying drugs yet available. We aimed to evaluate the safety, pharmacokinetics, and pharmacodynamics of pegozafermin (BIO89-100), a glycoPEGylated FGF21 analogue, in participants with NASH. METHODS: This randomised, double-blind, placebo-controlled, phase 1b/2a multiple-ascending-dose study enrolled adults (aged 21-75 years) who had NASH with stage F1-F3 fibrosis, or non-alcoholic fatty liver disease and a high risk of NASH (referred to in this study as phenotypic NASH) due to central obesity with type 2 diabetes, or central obesity with increased alanine aminotransferase (ALT) or a Fibroscan score of 7 kPa or greater, across 12 specialist centres and clinics in the USA. Patients were centrally randomised by use of an interactive web response system to receive subcutaneously administered pegozafermin (3, 9, 18, or 27 mg once weekly; 18 or 36 mg once every 2 weeks) or placebo for 12 weeks. The primary endpoints were the safety, tolerability, and pharmacokinetics of pegozafermin. This trial is registered with ClinicalTrials.gov (NCT04048135). FINDINGS: Between July 29, 2019, and Aug 3, 2020, 275 participants were screened and 81 (15 [19%] with biopsy-confirmed NASH) were randomly assigned: 62 to pegozafermin (six to 3 mg once weekly, 12 to 9 mg once weekly, 11 to 18 mg once weekly, ten to 27 mg once weekly, 14 to 18 mg once every 2 weeks, and nine to 36 mg once every 2 weeks) and 19 to placebo; 63 received pegozafermin and 18 received placebo, as one participant in the placebo group inadvertently received 3 mg pegozafermin once weekly. Adverse events were reported in eight (44%) of 18 participants in the pooled placebo group, six (86%) of seven in the 3 mg once weekly pegozafermin group, four (33%) of 12 in the 9 mg once weekly group, seven (64%) of 11 in the 18 mg once weekly group, seven (70%) of ten in the 27 mg once weekly group, eight (57%) of 14 in the 18 mg once every 2 weeks group, and eight (89%) of nine in the 36 mg once every 2 weeks group. The most common treatment-related adverse event was mild increased appetite (in ten [16%] of 63 participants in the pooled pegozafermin group vs none of 18 in the pooled placebo group), which was not associated with bodyweight gain. Two patients discontinued treatment due to an adverse event (one each in the 27 mg once weekly and 18 mg once every 2 weeks groups). No treatment-related serious adverse events or deaths occurred. Dose-proportional pharmacokinetics were observed. Anti-drug antibodies were detected in 41 (65%) of 63 participants treated with pegozafermin. By week 13, pegozafermin significantly reduced the least squares mean (LSM) absolute differences in hepatic fat fraction versus pooled placebo (-8·9% [95% CI -14·8 to -3·1; p=0·0032] for 3 mg once weekly, -11·5% [-16·1 to -6·9; p<0·0001] for 9 mg once weekly, -8·9% [-13·7 to -4·2; p=0·0004] for 18 mg once weekly, -14·9% [-20·1 to -9·7; p<0·0001] for 27 mg once weekly, -10·4% [-14·7 to -6·1; p<0·0001] for 18 mg once every 2 weeks, and -11·1% [-16·2 to -6·0; p<0·0001] for 36 mg once every 2 weeks). At week 13, significant LSM relative reductions versus pooled placebo in ALT were observed for pegozafermin 9 mg once weekly, 18 mg once weekly, 27 mg once weekly, and 36 mg once every 2 weeks. At week 13, significant LSM relative reductions versus pooled placebo in aspartate aminotransferase were observed for pegozafermin 3 mg once weekly, 27 mg once weekly, and 36 mg once every 2 weeks. Significant improvements were also observed with pegozafermin treatment for triglycerides (9 mg once weekly, 27 mg once weekly, and 18 mg once every 2 weeks), LDL-C (9 mg once weekly and 27 mg once weekly), HDL-C (3 mg once weekly and 18 mg once every 2 weeks), non-HDL-C (9 mg once weekly and 27 mg once weekly), adiponectin (all doses except for 36 mg once every 2 weeks), PRO-C3 (27 mg once weekly), and bodyweight (27 mg once weekly). Changes in insulin resistance and HbA1c were not significant. INTERPRETATION: Pegozafermin was generally well tolerated and associated with clinically meaningful reductions in liver fat, measures of liver function, and circulating lipids. Further evaluation of pegozafermin in individuals with NASH is warranted. FUNDING: 89bio.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Adult , Humans , Diabetes Mellitus, Type 2/complications , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/complications , Obesity/complications , Obesity, Abdominal/complications , Young Adult , Middle Aged , Aged
11.
PLoS Pathog ; 18(12): e1011065, 2022 12.
Article in English | MEDLINE | ID: covidwho-2197183

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has made it clear that combating coronavirus outbreaks benefits from a combination of vaccines and therapeutics. A promising drug target common to all coronaviruses-including SARS-CoV, MERS-CoV, and SARS-CoV-2-is the papain-like protease (PLpro). PLpro cleaves part of the viral replicase polyproteins into non-structural protein subunits, which are essential to the viral replication cycle. Additionally, PLpro can cleave both ubiquitin and the ubiquitin-like protein ISG15 from host cell substrates as a mechanism to evade innate immune responses during infection. These roles make PLpro an attractive antiviral drug target. Here we demonstrate that ubiquitin variants (UbVs) can be selected from a phage-displayed library and used to specifically and potently block SARS-CoV-2 PLpro activity. A crystal structure of SARS-CoV-2 PLpro in complex with a representative UbV reveals a dimeric UbV bound to PLpro at a site distal to the catalytic site. Yet, the UbV inhibits the essential cleavage activities of the protease in vitro and in cells, and it reduces viral replication in cell culture by almost five orders of magnitude.


Subject(s)
COVID-19 , Ubiquitin , Humans , Ubiquitin/metabolism , Peptide Hydrolases/metabolism , SARS-CoV-2/metabolism , Catalytic Domain , Papain/chemistry , Papain/metabolism , Virus Replication
12.
Healthcare (Basel) ; 10(12)2022 Dec 14.
Article in English | MEDLINE | ID: covidwho-2163306

ABSTRACT

When college students face the COVID-19 pandemic and new learning challenges simultaneously, how to reduce or alleviate their own academic stress has become a topic of concern to students and their parents. The psychological and physiological benefits of regular exercise have been confirmed by related studies. This study aimed to explore the impact of college students' regular exercise behavior on academic stress and sleep quality during the COVID-19 pandemic. This study used a purposive sampling method to collect data through online questionnaires posted to relevant college student groups in northern, central, southern, and eastern Taiwan and the outlying islands. A total of 320 questionnaires were collected, with a response rate of 91.4%; based on 304 valid questionnaires. The validity rate was 95%. The obtained data were entered in SPSS 24.0 statistical software, and the correlation between variables was analyzed with AMOS 24.0 statistical software. The results show that hypothesis 1 is established, that is, regular exercise behavior of college students during the COVID-19 pandemic has a significant negative impact on academic stress, meaning that during the COVID-19 pandemic, if college students can use their spare time to make exercise part of their life, such a regular schedule will help reduce their academic stress. In addition, the empirical results show that hypothesis 2 is established, that is, regular exercise behavior of college students during the COVID-19 pandemic has a significant positive impact on sleep quality. A possible reason is that under the COVID-19 pandemic, the efficiency of the body to absorb oxygen is increased through regular exercise, which reduces pressure and improves sleep quality. Hypothesis 3 is also confirmed, that is, the academic stress of college students during the COVID-19 pandemic has a significant negative impact on sleep quality. The reason may be that many leisure and social activities have been suspended during the COVID-19 pandemic, and thus college students exercised and studied during the time they originally intended for leisure and social activities, which reduced their academic stress, stabilized their mood, and improved their sleep quality.

13.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-2147433

ABSTRACT

Background For the intensivists, accurate assessment of the ideal timing for successful weaning from the mechanical ventilation (MV) in the intensive care unit (ICU) is very challenging. Purpose Using artificial intelligence (AI) approach to build two-stage predictive models, namely, the try-weaning stage and weaning MV stage to determine the optimal timing of weaning from MV for ICU intubated patients, and implement into practice for assisting clinical decision making. Methods AI and machine learning (ML) technologies were used to establish the predictive models in the stages. Each stage comprised 11 prediction time points with 11 prediction models. Twenty-five features were used for the first-stage models while 20 features were used for the second-stage models. The optimal models for each time point were selected for further practical implementation in a digital dashboard style. Seven machine learning algorithms including Logistic Regression (LR), Random Forest (RF), Support Vector Machines (SVM), K Nearest Neighbor (KNN), lightGBM, XGBoost, and Multilayer Perception (MLP) were used. The electronic medical records of the intubated ICU patients of Chi Mei Medical Center (CMMC) from 2016 to 2019 were included for modeling. Models with the highest area under the receiver operating characteristic curve (AUC) were regarded as optimal models and used to develop the prediction system accordingly. Results A total of 5,873 cases were included in machine learning modeling for Stage 1 with the AUCs of optimal models ranging from 0.843 to 0.953. Further, 4,172 cases were included for Stage 2 with the AUCs of optimal models ranging from 0.889 to 0.944. A prediction system (dashboard) with the optimal models of the two stages was developed and deployed in the ICU setting. Respiratory care members expressed high recognition of the AI dashboard assisting ventilator weaning decisions. Also, the impact analysis of with- and without-AI assistance revealed that our AI models could shorten the patients’ intubation time by 21 hours, besides gaining the benefit of substantial consistency between these two decision-making strategies. Conclusion We noticed that the two-stage AI prediction models could effectively and precisely predict the optimal timing to wean intubated patients in the ICU from ventilator use. This could reduce patient discomfort, improve medical quality, and lower medical costs. This AI-assisted prediction system is beneficial for clinicians to cope with a high demand for ventilators during the COVID-19 pandemic.

14.
Int J Environ Res Public Health ; 19(20)2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2068512

ABSTRACT

Epidemics represent a threat to human life and economy. Meanwhile, medical and non-medical approaches to fight against them may result in additional economic shocks. In this paper, we examine the economic impact of the 2003 SARS outbreak in China and associated government policies. Although the epidemic caused a substantial economic loss in the short term, the interventions for medical purposes positively impacted the economy of the severely affected regions through the increase in investments such as other fiscal stimuli. There is strong and robust evidence suggesting that the SARS epidemic and its associated countermeasure policies boosted local output by around 4% and industrial production by around 5%. The positive growth was mainly derived from the increase in investment and government activity, especially government expenditure. Besides that, lagged impacts were particularly pronounced to the economic system and lasted for longer even than the epidemic period in a biological sense. We attribute this to the relatively aggressive stance of policymakers in the face of the epidemic situation.


Subject(s)
Epidemics , Severe Acute Respiratory Syndrome , Humans , Severe Acute Respiratory Syndrome/epidemiology , Disease Outbreaks , China/epidemiology , Government , Economic Development
15.
Axioms ; 11(12):695, 2022.
Article in English | MDPI | ID: covidwho-2142455

ABSTRACT

The exploration of the dependency structure of the Chinese and EU carbon trading markets is crucial to the construction of a globally harmonized carbon market. In this paper, we studied the characteristics of structural interdependency between China's major carbon markets and the European Union (EU) carbon market before and after the launch of the national carbon emissions trading scheme (ETS) and the occurrence of the new coronavirus (COVID-19) by applying the C-vine copula method, with the carbon trading prices of the EU, Beijing, Shanghai, Guangdong, Shenzhen and Hubei as the research objects. The study shows that there exists a statistically significant dependence between the EU and the major carbon markets in China and their extremal dependences and dependence structures are different at different stages. After the launch of the national carbon ETS, China has become more independent in terms of interdependency with the EU carbon market, and is more relevant between domestic carbon markets. Most importantly, we found that the dependence between the EU and Chinese carbon markets has increased following the outbreak of COVID-19, and tail dependency structures existed before the launch of the national carbon ETS and during the outbreak of the COVID-19. The results of this study provide a basis for the understanding of the linkage characteristics of carbon trading prices between China and the EU at different stages, which in turn can help market regulators and investors to formulate investment decisions and policies.

16.
Front Med (Lausanne) ; 9: 1020286, 2022.
Article in English | MEDLINE | ID: covidwho-2099180

ABSTRACT

Introduction: Shufeng Jiedu capsule (SFJD) is a commonly used Chinese patent medicine in China. Some studies have reported that SFJD has therapeutic effects in patients diagnosed with COVID-19. This systematic review aimed to critically evaluate the efficacy and safety of SFJD combined with western medicine (WM) for treating COVID-19. Methods: A literature search by using WHO COVID-19 database, PubMed, Embase, Cochrane Library, the Web of Science, CKNI, Wanfang, VIP, SinoMed, and clinical trial registries was conducted, up to 1 August 2022. Randomized controlled trials (RCTs), non-RCTs, cohort studies and case series of SFJD combined with WM for COVID-19 were included. Literature screening, data extraction, and quality assessment were performed independently by two reviewers in line with the same criteria. We used the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) to assess the certainty of evidence. Meta-analyses were performed with Revman 5.3 if possible. The descriptive analysis was conducted when the studies could not be meta-analyzed. Results: Totally 10 studies with 1,083 patients were included. Their methodological quality were moderate. The results demonstrated that compared to WM group, SFJD + WM group remarkably increased the nucleic acid negative conversion rate (RR = 1.40, 95%CI: 1.07-1.84), total effective rate (RR = 1.18, 95%CI: 1.07-1.31), cure rate (RR = 4.06, 95%CI: 2.19-7.53), and the chest CT improvement rate (RR = 1.19, 95%CI: 1.08-1.31), shorten nucleic acid negative conversion time (MD = -0.70, 95%CI: -1.14 to -0.26), reduced the clinical symptom disappearance time (fever, diarrhea, cough, fatigue, pharyngalgia, nasal congestion, and rhinorrhea), as well as improved the levels of laboratory outcomes (CRP, IL-6, Lym, and Neu). Additionally, the incidence of adverse reactions did not exhibit any statistically significant difference between SFJD + WM group and WM group. Conclusion: SFJD combined with WM seems more effective than WM alone for the treatment of COVID-19. However, more well-designed RCTs still are warranted. Systematic review registration: [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42022306307].

17.
Artif Intell Med ; 135: 102439, 2023 01.
Article in English | MEDLINE | ID: covidwho-2095068

ABSTRACT

Opioid overdose (OD) has become a leading cause of accidental death in the United States, and overdose deaths reached a record high during the COVID-19 pandemic. Combating the opioid crisis requires targeting high-need populations by identifying individuals at risk of OD. While deep learning emerges as a powerful method for building predictive models using large scale electronic health records (EHR), it is challenged by the complex intrinsic relationships among EHR data. Further, its utility is limited by the lack of clinically meaningful explainability, which is necessary for making informed clinical or policy decisions using such models. In this paper, we present LIGHTED, an integrated deep learning model combining long short term memory (LSTM) and graph neural networks (GNN) to predict patients' OD risk. The LIGHTED model can incorporate the temporal effects of disease progression and the knowledge learned from interactions among clinical features. We evaluated the model using Cerner's Health Facts database with over 5 million patients. Our experiments demonstrated that the model outperforms traditional machine learning methods and other deep learning models. We also proposed a novel interpretability method by exploiting embeddings provided by GNNs to cluster patients and EHR features respectively, and conducted qualitative feature cluster analysis for clinical interpretations. Our study shows that LIGHTED can take advantage of longitudinal EHR data and the intrinsic graph structure of EHRs among patients to provide effective and interpretable OD risk predictions that may potentially improve clinical decision support.


Subject(s)
COVID-19 , Opiate Overdose , Humans , COVID-19/epidemiology , Electronic Health Records , Machine Learning , Neural Networks, Computer , Pandemics , Decision Support Systems, Clinical
18.
Processes ; 10(11):2213, 2022.
Article in English | MDPI | ID: covidwho-2090310

ABSTRACT

COVID-19 is a global pandemic infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The herbal formula, Ping An Fang Yu Yin (PAFYY), has been used to prevent respiratory viral infections for many years. This study aims to evaluate the effect of PAFYY on SARS-CoV-2 infection, oxidative stress, and inflammation via in vitro, investigate the chemical composition by full constituent quantitative analysis, and verify its anti-viral potential against SARS-CoV-2 using in silico. In this study, a total of eleven compounds, twenty amino acids, saccharide compositions, and trace elements were found and quantitatively determined by chromatographic techniques. PAFYY displayed free radical scavenging activity (DPPH, SC50: 1.24 ±0.09 mg/mL), SOD activity (68.71 ±1.28%), inhibition of lipoxygenase activity (75.96 ±7.64 mg/mL) and interfered the interaction of SARS-CoV-2 spike protein and angiotensin-converting enzyme 2 (48.04 ±3.18%). Furthermore, in-silico analysis results supported that liquiritin, 3,5-dicaffeoylquinic acid, and luteolin-7-O-glucoside with the highest affinity between SARS-CoV-2 RBD and human angiotensin-converting enzyme II (hACE2) receptor. Our findings suggest that PAFYY has the potential for anti-SARS-CoV-2 infection, anti-oxidation stress, and anti-inflammation, and may be used as supplements for amelioration or prevention of COVID-19 symptoms, as well as the representative compounds can be used for quality control of PAFYY in the future.

19.
Int J Environ Res Public Health ; 19(21)2022 Oct 22.
Article in English | MEDLINE | ID: covidwho-2081891

ABSTRACT

School closures during the COVID-19 pandemic have interfered with children's learning. The aim of this study was to investigate the difficulties in managing children's learning at home and attending afterschool learning programs and their related factors among caregivers of children with attention-deficit/hyperactivity disorder (ADHD) during the COVID-19 pandemic. In total, 252 caregivers of children with ADHD completed a questionnaire collecting difficulties in managing children's learning, parenting styles, children's worsened symptoms of ADHD, oppositional defiant disorder (ODD) and emotion, and increased Internet use. Multivariate logistic regression models were used to examine the factors related to caregiver difficulties in managing children's learning and children's worsened ADHD, ODD, and emotional symptoms. In total, 85.3% of the caregivers had difficulty in asking their children to learn at home; 28.2% had difficulty in taking children to afterschool learning programs. Children's worsened anger was significantly associated with higher caregiver difficulty in asking children to learn at home, whereas parental overprotection was significantly associated with lower caregiver difficulty in asking children to learn at home. Worsened hyperactivity and opposition were significantly associated with higher caregiver difficulty in taking children to attend afterschool learning programs. Interventions for enhancing caregivers' skills to manage children's learning and children's behavioral and emotional symptoms should take the related factors found in this study into consideration.


Subject(s)
Attention Deficit Disorder with Hyperactivity , COVID-19 , Child , Humans , Caregivers/psychology , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/psychology , COVID-19/epidemiology , Pandemics , Taiwan/epidemiology , Emotions
20.
BMC Pulm Med ; 22(1): 368, 2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2053891

ABSTRACT

BACKGROUND: The successful management of patients infected with coronavirus disease 2019 (COVID-19) with inhaled ciclesonide has been reported, however few studies have investigated its application among hospitalized patients. METHODS: This retrospective cohort study enrolled all adult patients admitted to our hospital with confirmed COVID-19 infection from May to June 2021. Critical patients who received mechanical ventilation within 24 h after admission and those who started ciclesonide more than 14 days after symptom onset were excluded. The in-hospital mortality rate was compared between those who did and did not receive inhaled ciclesonide. RESULTS: A total of 269 patients were enrolled, of whom 184 received inhaled ciclesonide and 85 did not. The use of ciclesonide was associated with lower in-hospital mortality (7.6% vs. 23.5%, p = 0.0003) and a trend of shorter hospital stay (12.0 (10.0-18.0) days vs. 13.0 (10.0-25.3) days, p = 0.0577). In subgroup analysis, the use of inhaled ciclesonide significantly reduced mortality in the patients with severe COVID-19 infection (6.8% vs. 50.0%, p < 0.0001) and in those with a high risk of mortality (16.4% vs. 43.2%, p = 0.0037). The use of inhaled ciclesonide also reduced the likelihood of receiving mechanical ventilation in the patients with severe COVID-19 infection. After multivariate analysis, inhaled ciclesonide remained positively correlated with a lower risk of in-hospital mortality (odds ratio: 0.2724, 95% confidence interval: 0.087-0.8763, p = 0.0291). CONCLUSIONS: The use of inhaled ciclesonide in hospitalized patients with COVID-19 infection can reduce in-hospital mortality. Further randomized studies in patients with moderate to severe COVID-19 infection are urgently needed.


Subject(s)
COVID-19 Drug Treatment , Pregnenediones , Adult , Hospitalization , Humans , Pregnenediones/therapeutic use , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL